TERPENOID DERIVATIVES OF 4-HYDROXYPROPIOPHENONE AS JUVENOIDS AND JUVENOGENS. III.

Jitka KAHOVCOVÁ and Miroslav ROMAŇUK

2742

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague 6

Received February 4th, 1981

Using reactions modifying 4-(3,7-dimethyl-2,6-octadienyloxy)propiophenone and 4-(3,7-dimethyl-2-octenyloxy)propiophenone a series of new potential juvenoids and juvenogens was synthetized.

In this paper, which is a continuation of the study of the relationships between structure and juvenile-hormonal activity in the series of chemically modified 4-(3,7-dimethyl-2,6-octadienyloxy) propiophenone and 4-(3,7-dimethyl-2-octenyloxy) propiophenone^{1,2}, derivatives of 4-hydroxypropiophenone are described which contain a halogen atom in the terpenoid part of the molecule.

As a reaction for the introduction of a bromine or chlorine atom in the terpenoid part of the molecules the halogen-alkoxylation reaction was used, carried out by means of N-bromosuccinimide or N-chlorosuccinimide in hydroxy compounds as medium³. The reaction products (compounds I, IV-XI, XIII, XIV, XVI, XVII, Table I) were dependent on the reaction temperature and the type of alcohol. Thus, for example, on reaction of 4-(3,7-dimethyl-2,6-octadienyloxy)propiophenone with N-bromosuccinimide in methanol at $0-5^{\circ}$ C 7-bromo-6-methoxy derivative IV was formed, while at 15-25°C it was 2,3;6,7-bis(bromomethoxy) derivative VI. When 4-(3,7-dimethyl-2,6-octadienyloxy)- or 4-(3,7-dimethyl-2-octenyloxy)propiophenone was reacted with N-bromosuccinimide in the presence of aqueous dimethyl sulfoxide, bromohydrin derivatives II and III (Table I) were formed, respectively. An identical substance was also obtained on reaction of 4-(6,7-epoxy-3,7-dimethyl--2-octenyloxy)propiophenone with 0.5M-HBr in a mixture of acetic anhydride and acetic acid at room temperature. Hydroxy compound II was further etherified using 2,3-dihydro-4H-pyran or ethyl vinyl ether, under formation of compounds XII and XV, while when acetylated with acetic anhydride, derivative XVIII (Table I) was formed. Reduction of keto derivatives II - V, X and XIV with lithium aluminum hydride gave products XIX - XXIV (Table II).

Juvenogenic compounds XXV - XXXI (Table II) were prepared from 7-bromo--6-hydroxy compound III, 7-bromo-6-methoxy derivatives IV and V, 7-bromo--6-isopropoxy compound X and 7-bromo-6-(1-methoxyethoxy) derivative XIII

Juvenoids and Juvenogens

TABLE I

Characterization of compounds of the type

 $(CH_3)_2CBrCH(R^1)(CH_2)_2C(CH_3)$ =CHCH₂OC₆H₄-4-COC₂H₅

	R ¹ OCH ₃	Yield weight %	Formula	Calculated/Found		
No			(M.w.)	% C	% H	
I ^a		33	C ₂₁ H ₃₂ Cl ₂ O ₄ (419·4)	60·13 60·16	7·69 7·48	
II ^b	ОН	65	C ₁₉ H ₂₇ BrO ₃ (383·3)	59·53 59·28	7·10 7·36	
III ^{c,d}	ОН	62	C ₁₉ H ₂₉ BrO ₃ (385·3)	59·21 59·23	7·59 7·46	
IV ^e	OCH ₃	95	C ₂₀ H ₂₉ BrO ₃ (397·3)	60·45 60·18	7·35 7·22	
V ^{c,f}	OCH ₃	82	C ₂₀ H ₃₁ BrO ₃ (399·3)	60·14 60·00	7·82 8·06	
VI ^g	OCH ₃	74	$C_{21}H_{32}Br_2O_4$ (508·3)	49·61 49·48	6·34 6·62	
VII	OC ₂ H ₅	50	$C_{21}H_{31}BrO_{3}$ (411.4)	61·31 61·15	7·59 7·58	
VIII ^h	OC ₃ H ₇	48	C ₂₂ H ₃₃ BrO ₃ (425·4)	62·11 62·11	7·82 8·12	
IX	Oi-C ₃ H ₇	31	C ₂₂ H ₃₃ BrO ₃ (425·4)	62·11 62·32	7·82 7·80	
X ^{c,i}	Oi-C ₃ H ₇	30	C ₂₂ H ₃₅ BrO ₃ (427·4)	61·82 61·59	8·25 8·03	
XI ^j	OC ₄ H ₉	45	C ₂₃ H ₃₅ BrO ₃ (439·4)	62·86 62·56	8·02 8·18	
XII	OCH(CH ₃)OC ₂ H ₅	25	$C_{23}H_{35}BrO_{4}$ (455.4)	60·65 60·38	7·74 7·85	
XIII ^k	OC ₂ H ₄ OCH ₃	50	C ₂₂ H ₃₃ BrO ₄ (441·4)	59·86 59·64	7·53 7·63	
XIV ^{c,1}	OC ₂ H ₄ OCH ₃	45	C ₂₂ H ₃₅ BrO ₄ (443·4)	59·59 59·88	7·96 7·82	
XV ^m	$O(2-C_5H_9O)$	90	C ₂₄ H ₃₅ BrO ₄ (467·4)	61·66 61·66	7·54 7·24	
XVI	OC ₂ H ₄ Cl	11	$C_{21}H_{30}BrClO_3$ (445.8)	56·57 56·85	6·78 7-07	

2744 Kahovcová, Romaň					Romaňuk		
TABLE I (Continued)							
No	\mathbb{R}^1		Yield	Formula (M.w.)	Calculated/Found		
NO	K		weight %		% C	%Н	
XVII ⁿ	OCH ₂ C ₆ H ₅		10	C ₂₆ H ₃₃ BrO ₃	65.95	7.02	
				(473.4)	65-92	6.71	
XVIII ^o	OCOCH ₃		35	$C_{21}H_{29}BrO_4$	59.29	6.87	
				(425.4)	59.04	6.66	

^a (3,7-Dichloro-2,6-dimethoxy)alkyl compound; calculated: 16.91% Cl; found: 17.40% Cl; mass spectrum: $404/6/8/(C_{20}H_{30}Cl_2O_4)$, $368/70(C_{20}H_{29}ClO_4)$, $353/5(C_{19}H_{26}ClO_4)$, 339/41(C18H24ClO4), 336/8 (C19H25ClO3), 307/9 (C17H20ClO3), 296/8 (C16H21ClO3), 151 (C0H11. .O₂), 121 (C₇H₅O₂), 107/9 (C₄H₈ClO), 97 (C₆H₉O). ^b B.p. 168-170°C/13 Pa; mass spectrum: $382/4 (M^+)$, $302 (C_{19}H_{26}O_3)$, $231/3 (C_{10}H_{16}BrO)$, $151 (C_9H_{11}O_2)$, $150 (C_9H_{10}O_2)$, 121(C₇H₅O₂), 93 (C₆H₅O); IR spectrum (5%): 3 615, 3 573 (vOH), 3 473 (v(OH) assoc.), 1 688 (vCO), 1 670 (v(C=C)), 1 604, 1 583, 1 514 (v arom.) cm⁻¹. ^c 2,3-Dihydro compound. ^d B.p. 176-178°C/13 Pa; IR spectrum (3%): 3 616, 3 572 (v(OH)), 3 500 (v(OH) assoc.), 1 686 (v(CO)), 1 603, 1 577, 1 513 (v arom.), 1 368, 1 379 ($\delta_s(CH_3)$) cm⁻¹; ¹H-NMR spectrum, δ (ppm): 0.89 to 1 (m, 3 H), 1.19 (t, 3 H, J = 7), 1.31 (s, 3 H), 1.34 (s, 3 H), 1.43 - 2.04 (m, 6 H), 2.94 (q, 2 H, J = 7), 3·32 3·7 (m, H), 3·82-4·18 (m, 3 H), 6·92 (d, 2 H, J = 9), 7·96 (d, 2 H, J = 9); mass spectrum: 384/6 (M⁺), 369/71 (C₁₈H₂₆BrO₃), 355/7 (C₁₇H₂₄BrO₃), 304 (C₁₉H₂₈O₃), 291 $(C_{18}H_{27}O_3), 275 (C_{18}H_{27}O_2), 247 (C_{16}H_{23}O_2), 233 (C_{15}H_{21}O_2), 219 (C_{14}H_{19}O_2),$ 205 $(C_{13}H_{17}O_2), 191(C_{12}H_{15}O_2), 177(C_{11}H_{13}O_2), 163(C_{10}H_{11}O_2), 155(C_{10}H_{19}O),$ 150 (C₉H₁₀O₂), 137 (C₁₀H₁₇), 121 (C₇H₅O₂). ^e B.p. 164-166°C/13 Pa; calculated 20·11% Br, found 20.46% Br; mass spectrum: 396/8 (M⁺), 381/3 (C₁₉H₂₆BrO₃), 365/7 (C₁₉H₂₆BrO₂), 285 $(C_{19}H_{25}O_2), 247/9 (C_{11}H_{20}BrO), 215/7 (C_{10}H_{16}Br), 167 (C_{11}H_{19}O), 151 (C_{9}H_{11}O_2), 150$ (C₉H₁₀O₂), 135 (C₁₀H₁₅), 121 (C₇H₅O₂), 93 (C₆H₅O). ^f B.p. 170-172°C/13 Pa; mass spectrum: 398/400 (M⁺), 383/5 (C₁₉H₂₈BrO₃), 369/71 (C₁₈H₂₆BrO₃), 367 (C₁₉H₂₈BrO₂), 318 $(C_{20}H_{30}O_3)$, 289 $(C_{18}H_{25}O_3)$, 150 $(C_9H_{10}O_2)$, 121 $(C_7H_5O_2)$; IR spectrum (3%): 1686 $(\nu(CO)), 1\ 604, 1\ 577, 1\ 513$ (ν arom.), 1 381, 1 367 ($\delta_s(CH_3)$) cm⁻¹; ¹H-NMR spectrum; δ (ppm): 0.89-1 (m, 3 H). 1.19 (t, 3H, J = 7), 1.26 (s, 3H), 1.31 (s, 3 H), 1.5-2.0 (m, 6 H), 2.94 (q, 2 H, J = 7), 3·25 (s, 3 H), 3·25-3·55 (m, H), 3·75-4·20 (m, 3 H), 6·91 (m, 2 H, J = 9), 7·95 (m, 2 H, J = 9). ^g (3,7-Dibromo-2,6-dimethoxy)alkyl compound; calculated: 31-40% Br; found: 31-31% Br; mass spectrum: $506/8/10 (M^+)$, $477/9/81 (C_{19}H_{27}Br_2O_4)$, $446/8/50 (C_{18}H_{24}Br_2O_3)$, 426/8(C₂₁H₃₁BrO₄), 277/9 (C₁₂H₂₂BrO₂), 251/3 (C₁₀H₂₀BrO₂), 245/7 (C₁₁H₁₈BrO), 191/3 (C₇H₁₂. .BrO), 151 (C₉H₁₁O₂), 150 (C₉H₁₀O₂), 121 (C₇H₅O₂); ¹H-NMR spectrum, δ (ppm): 1-29 $(s, 3 H), 1\cdot 34 (s, 6 H), 1\cdot 20 (t, 3 H, J = 7), 2\cdot 94 (q, 2 H, J = 7), 1\cdot 50 - 2\cdot 40 (m, 4 H), 3\cdot 92 (m, H), 1\cdot 20 (m, 4 H), 3\cdot 92 (m, H),$ $3 \cdot 22$ (s, 3 H), $3 \cdot 26$ (s, 3 H), $4 \cdot 32$ (m, 2 H), $4 \cdot 67$ (m, H), $6 \cdot 96$ (m, 2 H, J = 9), $7 \cdot 44$ (m, 2 H, J = 9). ^{h 1}H-NMR spectrum; δ (ppm): 0.89 (t, 3 H, J = 7), 1.21 (t, 3 H, J = 7), 1.26 (s, 3 H), 1.31 (s, 3 H), 1.75 (s, 3 H), 1.52 (m, 2 H), 1.82 (m, 2 H), 2-2.5 (m, 2 H), 2.94 (q, 2 H, J = 7), 3.28(m, 2 H), $3\cdot88$ (m, H), $4\cdot61$ (d, 2 H, $J = 6\cdot5$), $5\cdot56$ (t, H, $J = 6\cdot5$), $6\cdot92$ (m, 2 H, J = 9), $7\cdot93$ (m, 2 H, J = 9). ⁱ¹H-NMR spectrum: δ (ppm): 0.85-1.02 (m, 3 H), 1.12 (dd, 6 H, J = 6), 1.20 (t, 3 H, J = 7), 1.26 (s, 3 H), 1.33 (s, 3 H), 1.45-2.0 (m, 6 H), 2.94 (q, 2 H, J = 7), 3.28 to $4.08 \text{ (m, 5 H)}, 6.91 \text{ (d, 2 H, } J = 9), 7.98 \text{ (d, 2 H, } J = 9); \text{ mass spectrum: } 426/8 \text{ (M}^+), 411/3$

Juvenoids and Juvenogens

on reduction of the keto group with LiAlH₄ and subsequent acylation of the hydroxy compounds XX - XXIV. Identical products were also obtained when the reaction sequence was reversed, *i.e.* on reduction of the oxo compound, acylation and subsequent bromomethoxylation of the reaction product. In addition to the above-mentioned derivatives I - XXXI 4-(6,7-dibromo-3,7-dimethyl-2-octenyloxy)-, 4-(6,7-dibromo-3,7-dimethyloctyloxy)- and 4-(3,7-dimethyl-2,3,6,7-tetrabromooctyloxy)-propiophenone (compounds XXXII - XXXIV, Table III) were prepared by addition of bromine to the double bond of 4-(3,7-dimethyl-2,6-octadienyloxy)- and 4-(3,7-dimethyl-2-octenyloxy)- and 4-(3,7-dimethyl-2-octenylox))- and 4-(3,7-d

Using all these modifying reactions a series of juvenoids and juvenogens was prepared from 4-(3,7-dimethyl-2,6-octadienyloxy)- and 4-(3,7-dimethyl-2-octenyloxy)propiophenone, displaying a promising juvenile hormone activity in insect metabolism. Thus, for example, for the bug *Dysdercus cingulatus* (Hemiptera, *Pyrrhocoridae*) the activity range was 100-0.008 ID-50 morphologic units⁴, for *Graphosoma italicum* (Hemiptera, *Pentatomidae*) it was $1\ 000-0.8$ ID-50 morphologic units, and for the beetle *Tenebrio molitor* (Coleoptera, *Tenebrionidae*) it was 500-8ID-50 morphologic units.

EXPERIMENTAL

The products were purified chromatographically on a silica gel column (60–120 μ m, Service laboratory of the Institute), containing 8% (by weight) of water. The homogeneity of the fractions was determined by thin-layer chromatography on silica gel G (Merck) and Silufol with luminescent indicator (Kavalier), using H₂SO₄ or UV light of 254 nm wavelength for detection. The boiling points were not corrected. In some instances the chemical structure of the synthetized compounds

 $(C_{21}H_{32}BrO_3), 397/9 (C_{20}H_{30}BrO_3), 366/8 (C_{19}H_{27}BrO_2), 337/9 (C_{17}H_{22}BrO_2), 305 (C_{19}, C_{19}H_{27}BrO_2), 305 (C_{19}, C_{19}H_{27}BrO_2), 305 (C_{19}, C_{19}H_{27}BrO_2), 305 (C_{19}, C_{19}H_{27}BrO_2), 305 (C_{19}H_{27}BrO_2), 305 (C_{19$.H₂₉O₃), 288 (C₁₉H₂₈O₂), 275 (C₁₇H₂₃O₃), 259 (C₁₇H₂₃O₂), 247 (C₁₆H₂₃O₂), 219 (C₁₄H₁₉. $.O_{2}), \ 203 \ (C_{13}H_{15}O_{2}), \ 189 \ (C_{12}H_{13}O_{2}), \ 177 \ (C_{11}H_{13}O_{2}), \ 163 \ (C_{10}H_{11}O_{2}), \ 150 \ (C_{9}H_{10}O_{2}), \ 100 \ (C_{10}H_{10}O_{10}), \ 100 \ (C_{10}H_{10}O_{10}O_{10}), \ 100 \ (C_{10}H_{10}O_{10}O_{10}O_{10}), \ 100 \ (C_{10}H_{10}O_{10}O_{10}O_{10}O_{10}), \ 100 \ (C_{10}H_{10}O_{1$ 137 (C₁₀H₁₇), 121 (C₇H₅O₂). ^j IR spectrum (3%): 1 686 (νCO), 1 604, 1 578, 1 513 (ν arom.), 1 381, 1 369 (δ_s (CH₃) cm⁻¹; mass spectrum: 438/40 (M⁺), 423/5 (C₂₂H₃₂BrO₃), 409/11 (C₂₁H₃₀BrO₃), 381/3 (C₂₀H₃₀BrO₂), 289/91 (C₁₄H₂₆BrO), 215/7 (C₁₀H₁₆Br), 151 (C₉H₁₁O₂), 135 (C₁₀H₁₅); ¹H-NMR spectrum δ (ppm): 0.88 (t, 3 H, J = 7), 1.16 (t, 3 H, J = 7), 1.23 (s, 3 H) 1.28 (s, 3 H), 1.52 (m, 4 H), 1.73 (s, 3 H), 1.82 (m, 2 H), 2.2 (m, 2 H), 2.91 (q, 2 H, J = 7), 3.28(m, 2 H), 3.88 (m, H), 4.58 (d, 2 H, J = 6.5), 5.53 (m, H), 6.91 (m, 2 H, J = 8.5), 7.95 (m, 2 H, J = 8.5), 7 J = 8.5). ^k Mass spectrum: 440/2 (M⁺), 425/7 (C₂₁H₃₀BrO₄), 411/3 (C₂₀H₂₈BrO₄), 365/7 $(C_{19}H_{26}BrO_2),\ 335/7\ (C_{17}H_{20}BrO_2),\ 291/3\ (C_{13}H_{24}BrO_2),\ 285\ (C_{19}H_{25}O_2),\ 215/7\ (C_{10}H_{16}.$.Br), 210 ($C_{13}H_{22}O_2$), 189 ($C_{12}H_{13}O_2$), 159/61 (C_6H_8Br), 151 ($C_9H_{11}O_2$), 135 ($C_8H_7O_2$), 131 ($C_7H_{15}O_2$), 121 ($C_7H_5O_2$). 1R spectrum (3%): 1741 (vCO ester.), 1603, 1577, 1514 (v arom), 1 382, 1 368 (δ_s (CH₃)) cm⁻¹. ^m Mass spectrum: 334/6 (C₁₇H₁₉BrO₂), 203 (C₁₃H₁₅O₂), 151 (C9H11O2), 121 (C7H5O2), 84 (C5H8O). " Mass spectrum: 364/6 (C19H25BrO2), 322/4 (C17. .H₂₃BrO), 298/300 (C₁₅H₂₃BrO), 259 (C₁₇H₂₃O₂), 249/51 (C₁₀H₁₈BrO₂), 231/3 (C₁₀H₁₆BrO), 150 (C9H10O2), 137 (C10H17), 121 (C7H5O2), 108 (C7H8O). ^o IR spectrum (3%): 1745 (vCO), $1688 (\nu(CO)), 1672 (\nu(C=C)), 1603, 1581 (\nu arom.), 1229 (\nu(C=O))cm^{-1}.$

was confirmed by IR (UR 20 spectrophotometer), mass (AEI MS-902 spectrometer, 70 eV ionization potential) and ¹H-NMR (Varian HA-60 and HA-100, $C^{2}HCl_{3}$, tetramethylsilane, 60 and 100 MHz) spectrometry.

Preparation of Compounds I-V, VII-XI, XIII, XIV, XVI, and XVII

N-Bromosuccinimide (N-chlorosuccinimide) (0.02 mol) was added at $0-5^{\circ}$ C under nitrogen to a solution of 4-(3,7-dimethyl-2,6-octadienyloxy)- or 4-(3,7-dimethyl-2-octenyloxy)propiophenone in anhydrous methanol (ethanol, n-propanol, 2-propanol, n-butanol, 2-methoxyethanol, 2-chloroethanol, benzyl alcohol) or to a solution of these substances (0.01 mol) in 50 ml dimethyl sulfoxide and 0.55 ml of H₂O and the mixture was stirred at this temperature for 15 min. After dilution with water the mixture was extracted with diethyl ether. The ethereal layer was dried over MgSO₄ and evaporated under reduced pressure. The residue was separated by column chromatography.

Preparation of Compound VI

N-bromosuccinimide (0.02 mol) was added to a solution of 4-(3,7-dimethyl-2,6-octadienyloxy)propiophenone in methanol at $15-25^{\circ}$ C, under nitrogen. The mixture was stirred at this temperature for 1 h and diluted with water and extracted with diethyl ether. Further procedure is described in the preceding experiments.

Preparation of Compounds XII and XV

A catalytic amount of *p*-toluenesulphonic acid was added to a solution of compound II (0.01 mol) in 2,3-dihydro-4*H*-pyrane or ethyl vinyl ether (0.01 mol) at room temperature and under stirring which was continued for another 10 minutes. After dilution with water and extraction with diethyl ether the product was obtained by column chromatography on silica gel.

Preparation of Compounds XIX-XXIV

A solution of compounds II - V, X or XIV (0.01 mol) in diethyl ether was added dropwise at $10-20^{\circ}$ C under stirring and exclusion of atmospheric moisture to a suspension of LiAlH₄ (5 mmol, 20 wt.% excess) in diethyl ether. The mixture was refluxed for 30 min. After cooling with ice and dilution with diethyl ether the unreacted hydride in the mixture was decomposed by addition of water and dilute H₂SO₄ to the stirred solution. The separated ethereal layer was washed with a saturated NaCl solution, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by column chromatography as above.

Preparation of Compounds XXV-XXX

Chloride or anhydride of monocarboxylic acid (0.01 mol) was gradually added to a stirred solution of compound XX-XXIV (0.01 mol) and pyridine (0.01 mol), under addition of dimethylformamide if necessary, kept at room temperature. The mixture was allowed to stand at room temperature for 30 min in the case of acetic anhydride and overnight in the case of acid chloride. The isolation of the product was the same as in the preceding cases. During the preparation of compound XXIX the mixture of compound XXII (0.01 mol), dicarboxylic acid anhydride (0.01 mol) and pyridine (0.01 mol) was heated at 60°C for 10 h and then allowed to stand at room temperature overnight. The product was isolated as described above.

2746

Juvenoids and Juvenogens

TABLE II

Characterization of compounds of the type

(CH₃)₂CBrCH(R¹)(CH₂)₂C(CH₃)---CHCH₂OC₆H₄-4-CH(OR²)C₂H₅

No	R ¹	R ²	Yield weight %	Formula	Calcul./Found	
No				(M.w.)	% C	%Н
XIX ^a	ОН	ОН	60	C ₁₉ H ₂₉ BrO ₃ (385·3)	59·22 59·42	7∙58 7∙70
XX ^{b,c}	ОН	ОН	70	C ₁₉ H ₃₁ BrO ₃ (387·3)	58·91 58·77	8·07 8·02
XXI ^d	OCH ₃	ОН	81	C ₂₀ H ₃₁ BrO ₃ (399·4)	60·14 60·31	7·82 7·65
XXII ^{b,e}	OCH ₃	ОН	85	C ₂₀ H ₃₃ BrO ₃ (401·4)	59·84 59·57	8·29 7·99
XXIII ^{b,f}	Oi—C ₃ H ₇	ОН	82	C ₂₂ H ₃₇ BrO ₃ (429·4)	61·52 61·30	8·68 8·38
XXIV ^b	OC ₂ H ₄ OCH ₃	ОН	80	C ₂₂ H ₃₃ BrO ₄ · (441·4)	59·86 59·96	7·54 7·51
XXV ^{b,g}	ОН	OCOCH ₃	61 ^{<i>h</i>}	C ₂₁ H ₃₃ BrO ₄ (429·4)	58·74 58·63	7·75 7·75
XXVI ⁱ	OCH ₃	OCOCH ₃	85	C ₂₂ H ₃₃ BrO ₄ (441·4)	59·86 60·20	7·54 7·69
XXVII ^{b,j}	OCH ₃	OCOCH ₃	79 ^k	C ₂₂ H ₃₅ BrO ₄ (443·4)	59·59 59·29	7·96 7·81
XXVIII ^{b,1}	OCH ₃	OCOCH ₂ Cl	80 ^k	C ₂₂ H ₃₄ BrClO ₄ (477·9)	55·29 55·00	7·17 7·39
XXIX ^{b,m}	OCH ₃	$OCOC_2H_4COOC_2H_5$	79 ^k	C ₂₆ H ₄₁ BrO ₆ (529·5)	58·97 58·80	7·81 7·59
XXX ^{b,n}	Oi—C ₃ H ₇	OCOCH ₃	89	C ₂₄ H ₃₉ BrO ₄ (471·5)	61·14 61·29	8·34 8·01
XXXI ^{b,o}	OC ₂ H ₄ OCH ₃	OCOCH ₃	84	C ₂₄ H ₃₉ BrO ₅ (487·5)	59·13 58·88	8·06 7·82

^a B.p. 165–7°C/13 Pa; IR spectrum (5%): 3 616 (ν (OH)), 3 573 (ν (OH)), 3 470 (ν (OH)) assoc. 1 672 (ν (C==C)), 1 611, 1 586, 1 513 (ν arom.) cm⁻¹. ^b 2,3-Dihydro compound. ^c B.p. 173 to 175°C/13 Pa; IR spectrum (5%): 3 617, 3 570 (ν (OH)), 1 614, 1 586, 1 515 (ν arom.), 1 383, 1 371 (δ_s (CH₃)) cm⁻¹; mass spectrum: 386/8 (M⁺); 368/70 (C₁₉H₂₉BrO₂), 339/41 (C₁₇H₂₄. BrO₂), 288 (C₁₉H₂₈O₂), 277 (C₁₇H₂₅O₃), 261 (C₁₇H₂₅O₂), 231 (C₁₆H₂₃O), 175 (C₁₂H₁₅O), 161 (C₁₁H₁₃O), 155 (C₁₀H₁₉O), 134 (C₁₀H₁₄), 123 (C₇H₇O₂); ¹H-NMR spectrum, δ (ppm): 0·87 (t, 3 H, J = 7), 0·90–1·02 (m, 3 H), 1·31 (s, 3 H), 1·33 (s, 3 H), 1·48–2·2 (m, 8 H), 3·3 to 3·5 (m, H), 3·90–4·10 (m, 3 H), 4·52 (t, H, J = 7), 6·85 (m, 2 H, J = 9), 7·13 (m, 2 H, J = 9).

TABLE II

(Continued)

^d B.p. 162-164°C/13 Pa; IR spectrum (5%): 3 621 (v(OH)), 3 487 (v(OH) assoc.), 1 741 (v(CO)). $1.674 (\nu(C=C)), 1.614, 1.586, 1.516, 1.506 (\nu arom.), 1.382, 1.369 (\delta_s(CH_3)), 1.240 (\nu_{es}(C=O))$ cm^{-1} ; mass spectrum: 398/400 (M⁺), 380/2 (C₂₀H₂₉BrO₂), 300 (C₂₀H₂₈O₂), 247/9 (C₁₁H₂₀) .BrO), 215/7 (C₁₀H₁₆Br), 152 (C₉H₁₂O₂), 134 (C₉H₁₀O), 123 (C₇H₇O₂). ^e B.p. 167-169°C/ /13 Pa; IR spectrum (5%): 3 620 (ν (OH)), 1 614, 1 586, 1 515 (ν arom.), 1 382, 1 368 (δ_s (CH₃)) cm^{-1} ; mass spectrum: 400/2 (M⁺), 382/4 (C₂₀H₃₁BrO₂), 367/9 (C₁₀H₂₈BrO₂), 339/41 $(C_{17}H_{24}BrO_2), 289 (C_{19}H_{29}O_2), 231 (C_{16}H_{23}O), 201/3 (C_{9}H_{14}Br), 175 (C_{12}H_{15}O), 161/3 (C_{10}H_{21}O), 161$ $(C_6H_{10}Br)$, 137 $(C_8H_9O_2)$, 134 $(C_{10}H_{14})$, 123 $(C_7H_7O_2)$; ¹H-NMR spectrum, δ (ppm): 0.86 (t, 3 H, J = 7), 0.9 - 1.1 (m, 3 H), 1.26 (s, 3 H), 1.31 (s, 3 H), 1.5 - 2.0 (m, 8 H), 3.20 (s, 3 H), 1.5 - 2.0 (m, 8 H), 3.20 (s, 3 H), 3. $3\cdot 35-3\cdot 69$ (m, H), $3\cdot 8-4\cdot 2$ (m, 3 H), $4\cdot 51$ (t, H, J = 7), $6\cdot 88$ (m, 2 H, J = 9), $7\cdot 28$ (m, 2 H, J = 9). ^f IR spectrum (5%): 3 620 (v(OH)), 1 613, 1 586, 1 514 (v arom.), 1 381, 1 369 (δ_s (CH₃)) cm⁻¹; mass spectrum: $428/30 (M^+)$, $410/2 (C_{22}H_{35}BrO_2)$, $368/70 (C_{19}H_{29}BrO_2)$, 339/41 $(C_{17}H_{24}BrO_2), 290 (C_{19}H_{30}O_2), 261 (C_{17}H_{25}O_2), 231 (C_{16}H_{23}O), 175 (C_{12}H_{15}O), 137 (C_{10}H_{23}O), 175 (C_{10}H_{15}O), 137 (C_{10}H_{15}O), 137$ $(C_8H_9O_2)$, 123 $(C_7H_7O_2)$; ¹H-NMR spectrum, δ (ppm): 0.89 (t, 3 H, J = 7), 0.9–1.05 (m, 3 H), 1.15 (dd, 6 H, J = 6), 1.27 (s, 3 H), 1.35 (s, 3 H), 1.4-1.9 (m, 8 H), 3.7-4.1 (m, 5 H), 4.52(t, H, J = 7), 6.86 (m, 2 H, J = 9), 7.24 (m, 2 H, J = 9). ^g IR spectrum (3%): 3618, 3571 $(\nu(OH))$, 3 427 $(\nu(OH)$ assoc.), 1 740 $(\nu(CO))$, 1 604, 1 516 $(\nu \text{ arom.})$, 1 382, 1 370 $(\delta_s(CH_3))$, 1 238 (ν (C—O)) cm⁻¹; ¹H-NMR spectrum, δ (ppm): 0.84 (t, 3 H, J = 7), 0.88–1.20 (m, 3 H), 1·32 (s, 6 H), 1·5-1·95 (m, 8 H), 2·02 (s, 3 H), 2·6-3·06 (m, H), 3·4-4·15 (m, 3 H), 5·64 (t, H, J = 7), 6.88, 6.91 (m, 2 H, J = 9), 7.27, 7.98 (m, 2 H, J = 9). ^h Yield of bromohydroxylation. ⁱ IR spectrum (2%): 1 741, 1 730 (v(CO)), 1 672 (v(C=C)), 1 615, 1 588, 1 515 (v arom.), 1 382, 1 369 (δ_{c} (CH₃)), 1 239 (ν (C–O)) cm⁻¹; mass spectrum: 440/2 (C₂₂H₃₃BrO₄), 380/2 (C₂₀H₂₀. .BrO₂), 300 ($C_{20}H_{28}O_2$), 247/9 ($C_{11}H_{20}BrO$), 215/7 ($C_{10}H_{16}Br$), 194 ($C_{11}H_{14}O_3$), 134 $(C_9H_{10}O)$, 123 $(C_7H_7O_2)$; ¹H-NMR spectrum, δ (ppm): 0.84 (t, 3 H, J = 7), 1.26 (s, 3 H), 1.31 (s, 3 H), 1.73 (s, 3 H), 1.92-2.52 (m, 6 H), 2.02 (s, 3 H), 3.16 (s, 3 H), 3.75-4.08 (m,H), 4.53 (d, 2 H, J = 6.5), 5.61 (t, 2 H, J = 7), 5.63 (t, 2 H, J = 7), 6.89 (d, 2 H, J = 9), 7.29 (d, 2 H, J = 7), 6.89 (d, 2 H, J = 9), 7.29 (d, 2 H, J = 7), 6.89 (d, 2 H, J = 9), 7.29 (d, 2 H, J = 7), 7J = 9). ^j IR spectrum (3%): 1 742 (v(CO)), 1 614, 1 587, 1 516 (v arom.), 1 381, 1 370 (δ_c (CH₃)), 1 239 (ν (C—O)) cm⁻¹; mass spectrum: 442/4 (M⁺), 413/5 (C₂₀H₃₀BrO₄), 399/401 (C₂₀H₃₂. .BrO₃), 382/4 (C₂₀H₃₁BrO₂), 370/2 (C₁₈H₂₇BrO₃), 367/9 (C₁₉H₂₈BrO₂), 351/3 (C₁₉H₂₈. .BrO), 339/41 (C17H24BrO2), 331 (C21H31O3), 289 (C19H29O2), 271 (C19H27O), 249/51 $(C_{11}H_{22}BrO)$, 134 $(C_9H_{10}O)$, 123 $(C_7H_7O_2)$; ¹H-NMR spectrum, δ (ppm): 0.79 (t, 3 H, J = 7), 0.85-0.95 (m, 3 H), 1.21 (s, 3 H), 1.26 (s, 3 H), 1.43-2.0 (m, 8 H), 1.96 (s, 3 H), 3.15 (s, 3 H), $3 \cdot 23 - 3 \cdot 50$ (m, H), $3 \cdot 7 - 4 \cdot 05$ (m, 3 H), $5 \cdot 54$ (t, H, J = 7), $6 \cdot 80$ (m, 2 H, J = 9), $7 \cdot 18$ (m, 2 H, J = 9). ^k Yield of bromomethoxylation. ¹ IR spectrum (5%): 1 764, 1 742 (v(CO)), 1 614, 1 587, 1 521, 1 516 (v arom.), 1 382, 1 368 ($\delta_s(CH_3)$), 1 249 (v(C-O)) cm⁻¹; mass spectrum: 476/8 (M^+) , 447/9/51 (C₂₀H₂₉BrClO₄), 428/30 (C₂₁H₃₃BrO₄), 399/401 (C₂₀H₃₂BrO₃), 339/41(C₁₇H₂₄BrO₂), 319 (C₂₀H₃₁O₃), 249/51 (C₁₁H₂₂BrO), 199/201 (C₉H₈ClO₃), 134 (C₉H₁₀O), 73 (C₄H₉O); ¹H-NMR spectrum, δ (ppm): 0.84 (t, 3 H, J = 7), 0.88 to 1.1 (m, 3 H), 1.25 (s, 3 H), 1·31 (s, 3 H), 1·5-2·05 (m, 8 H), 3·20 (s, 2 H), 3·25-3·7 (m, H), 3·8-4·15 (m, 3 H), 4·02 (s, 3 H), 5.73 (t, H, J = 7), 6.88 (m, 2 H, J = 9), 7.26 (m, 2 H, J = 9). ^m IR spectrum (3%): 1741, 1732 (v(CO)), 1615, 1587, 1521, 1516 (v arom.), 1381, 1369, (v arom.), 1381, 1 369 (δ_{s} (CH₃)), 1 249 (ν (C—O)) cm⁻¹; mass spectrum: 528/30 (M⁺), 497/9 (C₂₅H₃₈BrO₅), 448 (C₂₆H₄₀O₆), 417 (C₂₅H₃₇O₅), 382/4 (C₂₀H₃₁BrO₂), 367/9 (C₁₉H₂₈BrO₂), 351/3 (C₁₉H₂₈. BrO), 339/41 (C₁₇H₂₄BrO₂), 302 (C₂₀H₃₀O₂), 289 (C₁₉H₂₉O₂), 271 (C₁₉H₂₇O), 249/51 (C₁₁. .H₂₂BrO), 169 (C₁₁H₂₁O), 151 (C₉H₁₁O₂), 134 (C₉H₁₀O), 73 (C₄H₉O); ¹H-NMR spectrum, δ (ppm): 0.83 (t, 3 H, J = 7), 0.85–1.2 (m, 6 H), 1.28 (s, 3 H), 1.33 (s, 3 H), 1.45 to 2.2 (m,

TABLE II

(Continued)

8 H), 2.61 (m, 4 H), 3.22 (s, 3 H), 3.30-3.50 (m, H), 3.80-4.2 (m, 5 H), 5.63 (t, H, J = 7), 6.85 (m, 2 H, J = 9), 7.26 (m, 2 H, J = 9). ⁿ IR spectrum (3%): 1.743 (v(CO)), 1.614, 1.588, 1.516 (v arom.), 1 381, 1 370 (δ_s (CH₃)), 1 240 (ν (C-O)) cm⁻¹; mass spectrum: 470/2 (M⁺), 441/3 $(C_{22}H_{34}BrO_4), 411/3 (C_{22}H_{36}BrO_2), 410/2 (C_{22}H_{35}BrO_2), 390 (C_{24}H_{38}O_4), 351/3 (C_{19}H_{28})$.BrO), 350/2 (C₁₉H₂₇BrO), 339/41 (C₁₇H₂₄BrO₂), 289 (C₁₈H₂₅O₃), 261 (C₁₇H₂₅O₂), 231 $(C_{16}H_{23}O), 194(C_{11}H_{14}O_3), 165(C_9H_9O_3), 135(C_9H_{11}O), 134(C_9H_{10}O), 123(C_7H_7O_2), 123$ 107 (C₇H₇O), 101 (C₆H₁₃O); ¹H-NMR spectrum, δ (ppm): 0.83 (t, 3 H, J = 7), 0.9–1.0 (m, 3 H) 1.09 (dd, 6 H, J = 6), 1.24 (s, 3 H), 1.33 (s, 3 H), 1.4 - 2.0 (m, 8 H), 2.02 (s, 3 H), 3.65 - 4.06(m, 5 H), 5.58 (t, H, J = 7), 6.82 (m, 2 H, J = 9), 7.21 (m, 2 H, J = 9). ^o IR spectrum (3%): 1 741 (ν (CO)), 1 603, 1 577, 1 514 (ν arom.), 1 382, 1 368 (δ_{s} (CH₃)) cm⁻¹; mass spectrum: 486/8 (M⁺), 456/8 (C₂₂H₃₃BrO₅), 427/9 (C₂₂H₃₆BrO₃), 426/8 (C₂₂H₃₅BrO₃), 410/2 (C₂₁H₃₁. .BrO₃), 384/6 (C₁₈H₂₅BrO₄), 367/9 (C₁₈H₂₄BrO₃), 339/41 (C₁₇H₂₄BrO₂), 289 (C₁₈H₂₅O₃), 151 ($C_9H_{11}O_2$), 137 ($C_8H_9O_2$), 131 ($C_7H_{15}O_2$), 121 (C_8H_9O); ¹H-NMR spectrum, δ (ppm): 0.97 (t, 3 H, J = 7), 1.0 - 1.2 (m, 3 H), 1.31 (s, 3 H), 1.35 (s, 3 H), 1.45 - 2.0 (m, 8 H), 2.02(s, 3 H), 3.51 (s, 3 H), 3.3 - 3.7 (m, H), 3.8 - 4.3 (m, 6 H), 5.65 (t, H, J = 7), 6.95 (m, 2 H, J = 9),7.99 (m, 2 H, J = 9).

TABLE III

Calculated/Found Yield Formula R^1 R^2 No weight, % M.w. %C % H XXXII^a H H 80 50.91 6.30 C19H28Br2O2 (448.2)50.70 6.58 XXXIII^b double bond 35 51.14 5.87 C19H26Br2O2 (446.2)50.90 5.90 XXXIVC 12^d 37.65 4.32 Br Br C19H26Br4O2 (606.0)37.34 4.01

Characterization of Compounds of the type
(CH ₃) ₂ CBrCHBr(CH ₂) ₂ C(CH ₃)R ¹ CHR ² CH ₂ OC ₆ H ₄ -4-COC ₂ H ₅

^a Calculated: 35.65% Br; found: 35.21% Br; mass spectrum: 445/7/9 ($C_{19}H_{27}Br_2O_2$), 417/9/21 ($C_{17}H_{23}Br_2O_2$), 366/8 ($C_{19}H_{27}BrO_2$), 337/9 ($C_{17}H_{22}BrO_2$), 257 ($C_{17}H_{21}O_2$), 203 ($C_{13}H_{15}$. O_2), 189 ($C_{12}H_{13}O_2$), 175 ($C_{11}H_{11}O_2$), 161/3 ($C_{6}H_{10}Br$), 147/9 ($C_{5}H_8Br$), 137 ($C_{10}H_{17}$), 121 ($C_{7}H_5O_2$). ^b Calculated: 35.82% Br; found: 35.40% Br; mass spectrum: 444/6/8 (M⁺), 415/7/9 ($C_{17}H_{21}Br_2O_2$), 365/7 ($C_{19}H_{26}BrO_2$), 294/6/8 ($C_{10}H_{16}Br_2$), 215/7 ($C_{10}H_{16}Br$), 150 ($C_{9}H_{10}$. O_2), 135 ($C_{8}H_7O_2$), 121 ($C_{7}H_5O_2$). ^c Calculated: 52.74% Br; found: 52.59% Br; mass spectrum: 602/4/6/8/610 (M⁺), 573/5/7/9/81 ($C_{17}H_{21}Br_4O_2$), 523/5/7/9 ($C_{19}H_{26}Br_3O_2$), 494/6/8/500 ($C_{17}H_{21}Br_3O_2$), 318/20 ($C_{16}H_{15}BrO_2$), 215/7 ($C_{10}H_{16}Br$), 150 ($C_{9}H_{10}O_2$), 121 ($C_{7}H_5O_2$). ^d Compound XXXIV was isolated as a by-product during the preparation of compound XXXIII.

Preparation of Compounds XXXII-XXXIV

Bromine (0.01 mol) was added dropwise to a solution of 4-(3,7-dimethyl-2,6-octadienyloxy)or 4-(3,7-dimethyl-2-octenyloxy)propiophenone (0.01 mol) in CCl_4 at 0° and the mixture was stirred at this temperature for 30 min. After evaporation of the solvent under reduced pressure the residue was separated on a 100-fold amount of silica gel, using light petroleum with increasing amounts of diethyl ether for elution.

Elemental analyses were carried out by Mrs A. Froňková, Mrs E. Sýkorová, Mrs J. Konečná and Mrs E. Šípová (head of the department Dr J. Horáček); the mass spectra were measured and interpreted by Dr J. Kohoutová (head of the department Dr L. Dolejš); the IR spectra were measured and interpreted by Mrs K. Matoušková and Dr P. Fiedler (head of the department Dr J. Smolíková); the ¹H-NMR spectra were measured and interpreted by † Dr M. Synáčková, Dr M. Masojídková, Mrs J. Jelinková, Mrs M. Snopková and Dr D. Šaman (head of the laboratory † Dr Z. Samek). Biological tests were carried out by Dr K. Sláma, Entomological Institute, Czechoslovak Academy of Sciences, Prague.

REFERENCES

- 1. Kahovcová J., Romaňuk M.: This Journal 46, 1413 (1981).
- 2. Kahovcová J., Romaňuk M.: This Journal 46, 1614 (1981).
- 3. Kahovcová J., Romaňuk M., Sláma K.: Czech. 200 416 (1978).
- 4. Sláma K., Romaňuk M., Šorm F.: Insect Hormones and Bioanalogues. Springer, Wien 1974.

Translated by Ž. Procházka.